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Fig. 8. Reflection coefficient of a sphere on the center of the broad wall
in a rectangular waveguide with »=10.16 mm and 5/a=0.445.
——theoretically found behavior as given by (33) - - - - empirically
found behavior for small sphere diameters, see |2].

This coefficient, normalized to (d/ b)’, versus normalized
frequency k/k, is shown in Fig. 8. It agrees quite well
with the small diameter approximation of (1),

|| =5.8(d/b)’ (34)
which was found experimentally. Furthermore, the
frequency dependence of the reflection coefficient was
reported to be within 10 percent of its midband value

between 1.22<k/k < 1.7, [2], which is also confirmed by
the analytical calculations leading to (33) and Fig. 8.
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A method has been shown to calculate the T-section
equivalent circuit and the reflection coefficient for a
metallic sphere in a rectangular waveguide. Experimental
and theoretical results agree quite well. The theoretical
method applied here can also be applied to the T-section
equivalent circuits for obstacles with other forms in uni-
form waveguides.

CONCLUSIONS
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On the Propagation of Leaky Waves in a
Longitudinally Slotted Rectangular Waveguide

JAMES M. TRANQUILLA, MEMBER, IEEE, AND J. EUGENE LEWIS, SENIOR MEMBER, IEEE

Abstract—The field theory approach is used to study leaky-wave propa-
gation in a rectangular waveguide with long nonresonant slots in the
narrow walls. Radiation from the slots is confined by parallel plates which
act as transmission lines guiding the energy away from the slots. The
complex dispersion equations for TE waves are examined and solved using
an iterative numerical technique. Propagation characteristics both in the
axial and transverse directions are presented, along with the electric field
distribution and power flow. Restrictions on the analysis and on the
power-handling capacity imposed by slot width also are described.
Measurements of the phase characteristics of the dominant mode are in
good agreement with theoretical values.
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I. INTRODUCTION

LOTTED WAVEGUIDES are used both as applica-
tors for material processing [1], [2] and as antennas
[3]. In particular, traveling-wave slotted structures are
used in antenna design [4] because of their ease of con-
struction and their ability to control radiation by varying
the slot geometry along the length of the guide.
Typically, the analysis of leaky-wave structures has
been carried out using a microwave network representa-
tion of the transverse discontinuity [5]. This requires a
previous knowledge of the fields which are regarded as
weak perturbations of those which would exist in the
closed perfectly conducting guide. An alternative ap-
proach is to determine the propagation coefficient from
the field solution which satisfies the boundary conditions.

0018-9480,/80,/0700-0714$00.75 ©1980 IEEE
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Fig. 1. Geometry of slotted waveguide.

This technique yields a more accurate field representation,
although the resulting complex transcendental equation
must be solved by an iterative technique using a digital
computer.

The geometry of interest, shown in Fig. 1, consists of a
rectangular waveguide with long axial slots in both
narrow walls feeding parallel plates which enclose lateral
regions capable of guiding energy away from the slots.
This configuration was first studied by Snurnikova [6],
who gave the axial fields and characteristic equations for
TE waves. The purpose of this paper is to extend that
work. Since both narrow slots and truncated-series field
expressions are required in order to solve the characteris-
tic equations, the effects of these approximations on the
propagation coefficients and the matching of the
boundary conditions are examined. Experimental verifica-
tion of the axial phase coefficient is reported along with a
study of the power-handling capability of the guide. Also,
since the development of Snurnikova’s characteristic
equations has not been reported previously, this is out-
lined briefly in the Appendix.

II. TE WAVE SOLUTIONS

Radiation from a continuous longitudinal slot in a
lossless uniform waveguide can be described by a fast
traveling wave with a complex propagation coefficient [5].
The attenuation of the wave accounts for a continuous
leakage of energy. The TE solution [6] can be written

oo n
H, = n=2_°°An gﬁf (pnx)exp(j—gy—) €))

> B,exp(jq,x)cos(—rz)(y+d), x>h

r=0 2d
Ha=1 ar

B,exp(—jg.x)cos| — [(y+d), x<-—h
2 (72)
2

where 4, and B, are Fourier coefficients n and r are
integers, and subscripts 1 and 2 refer to the main wave-
guide and lateral regions, respectively. The common prop-
agation factor expj(yz—wt) has been omitted, and the
propagation coefficient is defined by

Y=B+ja. 3)
The choice of the cosine or sine function in (1) determines
the symmetry of the fields about the x =0 plane, while the
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integer  in (2) indicates the order of harmonic y variation
of the fields in the lateral regions. The complex wavenum-
bers p, and g, are given by

p=k—y— (o) @
#==v—(55) )

It will be shown in the following section that the r=0
term in (2) is sufficient to describe the fields in the lateral
regions. Since K> B for fast waves, then from (3) and (5)
letting »=0 results in g, having positive real and negative
imaginary parts. This corresponds to waves traveling in
the lateral regions away from the slots with growing
amplitude. This is characteristic of leaky waves; neverthe-
less, it has been shown [5] that such behavior may provide
a valid and highly convergent representation of the field
close to the slot.

Choosing the cosine function in (1) corresponds to
TE,,, modes in the closed waveguide where m is an even
integer. Applying Maxwell’s equations to find the trans-
verse field components for this case, and matching the
appropriate boundary conditions yields the equation

j 0 0
+ — A h D, A =0,
n P, smp,,h s;__: o 5 COSP; 2 r

r=0
n=0,+x1,+2-- (6)
where
Ao 2ns8°g, sin[ 7(nd—r/2)]sin[ 7(s8—r/2)] @
" 7 (n%0%—r?/4)(s02%—r2/4)
and
0=d/b. ®)

The derivation of (6) is given in the Appendix, while a
similar equation exists for the sine function in (1) corre-
sponding to TE,, waves where m is an odd integer

. [+ <] o0
Jj .
A —— A sinp.h >, A =0,
" P cosp,h s=2~ o Py ,-go "
n=0,x1,%2.--. (9)
III. TE WAVE SOLUTIONS FOR THIN SLOTS

Equations (6) and (9) can be solved easily only when
certain approximations are made. Only the zeroth-order
wave (r=0) will propagate in the lateral regions if the
plates are separated by less than a half wavelength. The
ratio of the cutoff frequency of the first-order (r= 1) wave
to that of the dominant TE,, mode in the main guide is
given by

F=h/(b0). (10)
For standard-ratio guides of #/b=2, and for 8 <0.3, the
cutoff frequency of the r=1 wave is sufficiently high that
several lower order modes may exist in the main guide
without exciting waves with r>0 in the lateral regions.
Hence it is adequate to employ only the =0 term in (2) if
the slots are thin. In this case the axial fields may be
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written

oo
cos nay
H = ZOA,, sin (pnx)cos—-b (1
e

H,,= Byexp(jk,x). (12)

The ratio of coefficients 4, /A4, can be found from (A10)
with r=0

é _Po sin(nm6) sin(poh) (13)
Ay p, nmd sin(p,h)’

Due to the (sinnwf)/nw@ factor, higher order terms in n
become increasingly insignificant and a truncated series
provides a valid field description in the main guide.
Following the method given in the Appendix, approxi-
mate characteristic equations corresponding to (6) and (9)
can be found.

& cotp,h sinnmd?

i —_—— = n=0,%+1,+2
1+2]0Kchn§0 i 0, n=0,%1,+2,
(14)
& tanp,h sinnwf
s nft SImnm =0, +1,%2,---.
1-2/6K_ h EO o h vl 0, n=0,+1%2
(15)

IV. PROPAGATION CHARACTERISTICS

The simplified equations (14) and (15) were solved for
the complex propagation coefficients of the TE,, and
TE,, waves. A Muller numerical scheme was employed
and the series were truncated after twenty terms due to
their rapid convergence. The axial phase and attenuation
coefficients for several slot widths are shown in Fig. 2 and
Fig. 3, respectively. These characteristics show that propa-
gation can occur at frequencies far below the normal
cutoff frequencies of the corresponding modes in the
closed waveguide. Far above normal cutoff the presence
of the slots cause only slight change to the propagation
coefficient of the closed waveguide. The attenuation very
rapidly decreases with increasing frequency, indicating a
diminishing leakage into the lateral regions, and the phase
coefficient quickly assumes that of the field in the closed
guide. As anticipated, these characteristics are more pro-
nounced for the narrower slots.

The transverse phase coefficient S, is shown in Fig. 4.
The most notable feature of this characteristic is the
transition of the field in the lateral regions from a slow to
a fast wave in the transverse direction. Provided the slot is
narrow, this transition occurs as the frequency is increased
through the normal cutoff of the corresponding mode in
the closed waveguide.

A number of measurements of the axial phase char-
acteristics were made in standard S- and X-band guides
with different slot widths. The normalized wavelengths are
shown in Fig. 5 for a frequency range above the normal
TE,, mode cutoff of the closed guide. The agreement of
the measurements with the theoretical results attests to the
validity of the approximations made in solving the char-
acteristic equation.
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V. ELEcTRIC FIELD DISTRIBUTION

An examination of the electric field in a transverse
plane of the waveguide will give further indication of the
validity of the narrow-slot and truncated-series approxi-
mations used in solving the characteristic equations. As a
result of these simplifications the electric fields expressed
as truncated forms of equations A4,,45 will only approxi-
mately satisfy the boundary conditions across the narrow
dimension of the guide which includes the slot. Fig. 6
shows the variation of the electric field along a portion of
the narrow wall of the guide. For § >0.3 the electric field
is no longer negligible on the metal surface. This repre-
sents the normal maximum permissible value of 4. Fig. 7
shows the electric field across the broad dimension of the
guide through the center of the slot, illustrating the per-
turbation of the field due to the presence of the slots. The
validity of the field matching is clearly evident at the
center of the slot, particularly for 8<0.3.

VI. POWER-HANDLING CAPABILITY

An indication of the power-handling capability of the
slotted waveguide is given by finding the power flowing
into the main section of the guide. From the Poynting
vector for TE,,, waves

1 h b
= ERC [ f

y=-b

—E, H}dydx (16)

where the transverse field components are found from
(11). Carrying out the appropriate manipulation yields

P wubhy*p, p* A A &k sinnaf k_sinnmf 1*
- 2(k k*)? noo © pnmd | p.nml
i —p¥ i h+pkh
sin(p,h f,, h) F(= 1y sin( p, fn ) (17)
(p.h—prh) (P.h+prh)
where
k.h
i , m odd integer
r - cosp,h (18)
"\ sink,h .
; R m even integer
sinp, h
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Fig. 6. Electric field strength across the slot.
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slotted waveguide.

Equation (17) can be used to determine the amplitude
factor 4, for constant power input. This enables the
evaluation of the electric field strength at any position in
guide, particularly that at which maximum electric field
occurs. Fig. 8 shows the variation in electric field strength
at the center of the broad wall and at the center of the slot
as a function of slot width and for two frequencies above
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normal cutoff of the TE,, mode. Except for extremely
narrow slot widths (4 <0.03), the maximum electric field
occurs in the center of the slot, rather than at the center of
the broad wall. Also, the field strength in the slot increases
gradually with slot width. This indicates that the slotted
guide is not capable of transferring as much power as the
closed guide. The power-handling capability of the former
also is shown in Fig. 8 as a percentage of that of the
closed guide of the same dimensions. As the slot width
increases, the power-handling capability decreases rapidly,
with only slight improvement with increasing frequency.

VIL

A quasi-static solution has been presented for the de-
termination of the axial and transverse propagation coef-
ficients of the TE leaky waves in a rectangular waveguide
containing long nonresonant slots feeding parallel-plate
lines in the transverse direction. The axial propagation
characteristics indicate that the slots cause little change to
the propagation characteristics of the closed waveguide if
the slots are very thin, or if the operating frequency is far
above the normal mode cutoff. A simultaneous reduction
in leakage also occurs under these conditions. A normal-
ized slot width of #~0.3 represents a maximum value
under which the approximate solution is valid.

Propagation also may occur below the normal mode
cutoff. The axial field becomes insignificant, and the field
approaches that of a TEM configuration.

The introduction of slots in the walls reduces the
power-handling capability of the guide due to the in-
creased field strength across the slots, with slight improve-
ment occuring if the frequency is increased.

VIII.

CONCLUSIONS

APPENDIX

Exact TE WAVE REPRESENTATION

The complete field for TE,,, waves with even values of
m satisfying Maxwell’s equations is

H,= 2 A cosp,,xexp( Zy) (A1)
n=—oo
E, = _ch;’” 2 Anp,,smp,,xexp(j Zy) (A2)
¢ NTT®
. o) . .
—jop jnm __( jnmy
E,=—2X % A4, cosp,x’— ( ) A3
x1 kg P n PpX b eXp b ( )
o
H,= > B exp( jq,x)cos———m(;; 4) (A4)
r=0
+d
2 B.jq, exp(jq,x)cos (gd ) (AS)
Ea= "2 S pexp(jg.) Tsin MO (ag)
S 2d
=X =Y
He=_E H=—00F (A7)
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where
K2=k*—y2 (A8)

The condition of vanishing E, at y= %4 is automatically
satisfied and the condition of vanishing E, at y==*5b is
ensured by the constraint 4,=A4_,.

The characteristic equation is found by matching
tangential fields at x =4 and using the Fourier method to
obtain expressions for the coefficients. Matching E, yields

ool 2 o )

> Ap,sinp,h

n=-—o0 y=—b
g B,jg,exp(jg,h) f E(—;;—d) &
-exp( —J ;n'ny )dy. (A9)

The integral on the left-hand side is nonzero only when
n=m,ie.,

_ =i & ., Bagexp(jgh)
P 5" ) -3)
-exp(ij)sinw(mH—%). (A10)

Matching H, at x=/ and integrating as before yields

m

r=0

A, cosp,h
s s

w(no+3)("-3)

-exp( —ésw )sinvr(nﬂ— %) (All)
Substituting (A1) into (A10) and éarrying out some sim-
plification while maintaining consistency in the integer
subscripts yields (6) given in the text. Making use of the
condition of continuity of the H, fields as x = % 4 leads to
a redundant equation since the H, component is auto-
matically accounted for by matching E, and H,. Using
sinp,x in (A1) and following a similar procedure yields (9)
which is the equation of TE,, waves for odd values of m.

B, =exp(—jq,h) 2 2nf

n=—o0
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